My focus is on building reliable, large-scale infrastructure for machine learning. I work to remove the systemic barriers that slow down AI research and development, allowing engineering innovation to go brrrr.
I aim to bridge the gap between a model's mathematical elegance and the real-world engineering required to make it perform at scale.
Resume
Site Reliability Engineer, Google
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Site Reliability Engineer, Sky
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Software Engineer, Sky
Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo.
Master of Science (M.S.) in Computer Science, University of Sheffield
Research area: Designed and validated a 3D Convolutional neural network using Python, TensorFlow, and Keras for the automated segmentation of brain tumors in MRI scans, achieving a DICE similarity coefficient of 0.88 on a novel dataset.
For more details, you can download my full resume here.
About this site
This site is my public lab notebookâa place to document experiments, share lessons learned (usually the hard way), and explore ideas in MLOps and observability.
Contact
- Email: [email protected]
- LinkedIn: linkedin.com/patrickellis
- GitHub: github.com/patrick-ellis